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Motion of a gyrostat is considered; The equations of motion are written in the 

Hamilton form and the change in the integrals of motion in the cases of Zhuko- 
vskii and Lagrange resulting from the Hamilton function undergoing small vari- 

ations is studied. 
Let the mechanical system under investigation depend on a set of parameters 

and let it be integrable for some definite values of these parameters. Study of 
the motion of this system in the case when the values of the parameters are cha- 
nged the system is no longer integrable, appears to be of interest. The solution 
of this problem involves overcoming certain fundamental difficulties connected 
with the problem of small denominators. In the case when the system is Hamil- 

tonian and the changes in the values of parameters are small, these difficulties 
have been overcome using the method proposed by Kolmogorov and Amoi’d in 

[l and 21. 
Amol’d’s solution [3] of the problem of a rapidly rotating, heavy, asymmetric 

rigid body with a fixed point, serves to illustrate the application of this method 
to the rigid body dynamics. 
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1, Let us consider a gyrostat as a system consisting of n + i rigid bodies&, S,, . . . . s,. 
the body.S,$with a fixed point acting as a carrier to all the remaining bodies ‘St which are 
are attached frictionlessly to +, at two points of the axis li.*The axis of rotation It (i = 

= 1, 2, . . ., n)is the principal central axis of the body Si,while a plane perpendicular 

to ii and passing through the center of gravity Ci of Si, is the plane of equal moments of . . 
inertiaei. Let us attach to the body 8, a moving coordinate system Oqz,zs with its ori- 

gin situated at the fixed point Let also et (et t, c Q, ei,).be a unit vector directed along 

the axis of rotation s*.; ri (rir, rip, ris)a vector directed to the center of mass of St from 

the fixed point; 0 (tit, us, 0s) the angular velocity of the carrier S,; vi the angle of 

rotation of Si about the axisli: m&e mass ofSi;‘Atthe moment of inertia of Si relative 

to the axis li; and A.d the components of the inertia tensor of the carrier 2,. 

We construct a Hamilton’s function of the system under consideration. assuming that 

the bodies SC undergo free inertial rotation. The kinetic energy of. the gyrostat is 

where i=1 

All = .A;, $ i [q (r$ -k q8’) -I- Di (eir’ f eia’) -i- -%e$l 

i=l 
(,t .2j 

Aa = Al2 -ir mirilril + Biejte~r - AiCilejl] (1 2 2) 

We define the spatial position of the carrier body $, in terms of the Euler angles $ 0, 
and cp, since in this case we can define completely the position of the mechanical syst- 
em considered here, at any instant of time, in terms of the generalized coordinates 

$,I 6, cp, (Pl? ***1 tp,,. The quantities 0,. as, Us’are related to 9,6, cp in the following ma- 

nner tit= *sin q sin 6 + 6 cos cp (1.3) 

oa=$coscpsinO-6 siu cp, (ljs z 4’ c,os lJ “- I$ 

Inserting (1.3) into (1.1) we obtain an expression for the kinetic energy in terms of the 

generalized coordinated and the velocity. This in turn yields the generalized impulses 

+ ltz, cos i sin 0 + /ia cos’0) OX + (‘431 sin cp sin 6 + Aaz Cos Cp Sin 0 -i- An’COS 0) @a f 
11 

+ 2 Ai (eil sin cp sin 6 -j- Cia CO9 Cp Sin 0 -k ep COS a) & (1.4) 

pe = dT/ae.(fl(A,, cos cp - Aa sin cp) or+ (AH cos go - Amain 9) oa i- (Aal co9 Cp - 

n 

- AW sin cp) 01 + 2 AI h cos 9 - CP sin VI ;Pi 
a==;1 

n 

p. = aTlaG = AUW + ASW + Aas~a -I- 2 Aiee@i 
i=l 

pi = aT/dGi = Ai+{ + Ai (+a1 $- e+h + e&h) (i=l.Z, . . . , n) 
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Insertion of the expression for cpi =rpt (pi) obtained from the last relations of (1.4) into 

Aa - i Aieizep 
i-1 

Let us reduce this quadratic form to its canonical form. Denoting 

Al = All’ -i Ajeil”, Aa = Aaa’ -i Aieia’*, A0 = Aa’ -‘i Aieia” 
i=1 h-1 i=l 

we obtain 
(1.5) 

kl 

T = i/n (41~1~ + Aaoaa + Aaoaa) + A (3 4 

Eliminating 9~‘~ from (1.4) and taking into account (1.5) we obtain 

p+ = (A,,o, + h,) sin cp sin 6 + (A,o, + 1,) cos ‘p sin 6 + (AsUs + 1s) Co9 6 (1.7) 

P, = (A,o, -I- h,) cos cp - (A,o, -I-&) sincp, p, = A3o3 $ h-s 

The latter formula yields expressions forOr, oa, oawhich, inserted into (1.6). give an 
expression for the kinetic energy in terms of the generalized impulsesP+, PN P&=-Ed- 

ized coordinates I$, 6, ‘p and the quantitiesh,, ha, h,,the latter being functions Of,pi* The 

potential energy of the system is 
II = 1’ [(er sin cp + e2 co9 rf) sin 6 + e8 CC8 61 

I’ 5: JJg 1 rc 1, hJ = i 

?I 

mi, rC = [ rC I e (eh ea, es) = L- 
1=0 

bf i=. m’rt 2 -) 

therefore tie Ham;ian function for the gyrostat can be written as follows: 

H = B,t,,12sin~6 (1’2 L(P+ - p, cos 6) sin (p -I_ pe cos ‘p sin 6 - 11 sin 191~ + Al [(pJ, - 

.- pv cos 6) cos ‘p - pO sin qJ sin 0 - hz sinVJ _1- (p* - Xs)a 
2A8 

+ r [(el sin v + et co9 cp) X 

Xsin fi -+ es cm O] + A (1.8) 
bmce ($Q are cyclic coordinates, pi as well as I,, h,, &remain constant throughout. the 

motion. The vector k (&, I,, X,)is called the gyrostatic moment. It characterizes the 

internal motions of the gyrostat and is equal to the sum of thevectors of the absolute ang- 

ular momentum of the bodies b’irelative to the axes l+ respectively. When X,vanishes, the 
formula (1.8) becomes an expression for the Hamilton function of the heavy rigid body. 

We note that the Hamilton function retains its form (1.8) also in the case when the 
bodies Si rotate relative to S,with a constant angular velocity vi’“.The coefficients app- 
earing in (1.8) however assume a different meaning, namely/l,, A,, ‘t3are now the co- 
efficients of the quadratic form reduced to the canonical form with respect too,, 02, i,, 
and defined by (1.2) 
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In this case the gyrostatic moment li is equal to the sum of the angular momentum vec- 
tors of Si relative to the axes Ii respectively. 

2, From (1.8) we see that W is cyclic coordinate and the corresponding impulse is 
therefore constant 

IJ+ = k (2-U 

We use the integral (2.1) to decrease the number of degrees of freedom of the system to 
two. We make the substitution p+ = k in the Hamilton function 

if = If (e, rp, pat pc,v k) (2.2) 

and regard k as a parameter. 
Let us consider two cases in which the equations of motion containing the function 

(2.2) are integrable. 

1. The Lagrange case: A, = A,, e, = e2 = 0, h,=h, = 0. The fourth integral 

p, = m = cod (2.3) 

2. The Zhukovskii case:I’ = O.The fourth integral 

pea + siiz* (p+z + p,a - 2p,p+ cos 0) =AP.= const (2.4) 

Let us denote in both these cases the Hamilton function by If,,, and call the motion 

of the gyrostat in which ZI,appears. unperturbed. Then the function 

If = Zf(# + eZf, (2.5) 

will define a perturbed motion (here elf, is a small perturbation). The following theor- 
ems hold for the perturbed motion. 

Theorem 2.1. If the motion of the gyrostat is described by the function (2.5) 

and H,denotes the Hamilton function in the Lagrange case. then for any y. > 0 there 
exists Ed > Osuch that as soon as 0 < E < Co, I o3 (t) - o3 (0) I < x for allt E(--cz, co). 

Theorem 2.2. If the motion of the gyrostat is described by the function (2.5) 
and H,denotes the Hamiltonian function in the Zhukovskii case, then for any y. > 0 there 

exists co > Osuch that as soon as 0 < E < co, J Al (t) - AI (0) 1 < xfor all t E (- .w, w). 

9. Let us prove Theorem 2.1. In the Lagrange case the function Zf,,is 

ZZ” = 1 
311 [ ( 

PO2 -l- pJ, 
-pp,cos6 2 

, 
sin 0 11 

,_ (P, - w 

z/la 
$ rc3 cos 6 + A 

We use the canonical transformation to introduce the action-angle J,, J,, IQ, (L‘: var- 
iables [4]. In the new variables the function i/,depends oniy on J,,and J,. We have 

Y 
J, = mdv = 2nm 

R 
(3. i) 

J? -: :! i j2,11 ho _ rcn cos 6 
I 

(“tL;;lk)’ - A] _ (’ - “’ ‘OS *Ia )“’ do 
sin’6 

The quantitik 6,, and 0* define the limits of variation of the angle of nutation V. The 
cases in which 0 = const, are not considered. Let US set in (3.1) cos 6 = u and write 
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f (u) -- 2/l, (1 - u ‘) pI@ - (J18;3yJ’ - reju - *] - (k - -&- u)” 

fl1 = co9 6,, IL, = toe 65 

Then 

(3.2) 

The formula (3.2) defines Hoas the function of Ji, and J,. The equations of motion now 

give 

“’ 1 
01 = 1L’l’ = 7 

c 

A1 (1 - us) (J1 - 2&) - Aau (2nk - JiU) dU 

:, 
4n’Aa (i- u’) I/,+- 

and the obvious expression for the frequency 
when H,, is fixed. 

ratioo,/o,can be shown to vary with J,, J, 

In the phase space the unperturbed motion can be regarded [2] as a motion with con- 
stant velocity of the representative point on a torus. The quantities 01, and o1 are the 

frequencies with which the corresponding angular coordinates vary on the torus, while 

J,, and I, both remain constant. 

Passing now to the perturbed motion, we shall show that the condition of nondegene- 

racy PI 
dot a2No Ego 

I iiJ,aJj I 
(3.3) 

holds. It follows that the Kolmogorov theorem [l] on the conservation of motion can 

111 2 
u (2.d; - J,u) du ‘!’ ,(1 .‘: * 

- (1 -3 
IL1 zx (V/ (4 1 ++\ -;+w; \ AI+(A3-*2 

(1 -id?) f/t (u) dr‘ + O 
1 

When the value ot the energy iII, 2 tixed. the ra?ooJo,varies with J,, J,, therefore 
the perturbed system has invariant tori at each energy level as well as in any neighbor- 
hood u of an arbitrary point of the phase space, provided that E (IL) is sufficiently sm- 
all. Since the system under consideration has two degrees of freedom, the invariant 
tori share the three-dimensional invariant energy level. When the initial values fall 

outside the invariant torus of the perturbed system, the representative point remains 

between the two neighboring tori during the whole motion. 
The Kolmogorov theorem implies that the variation in J1 (L) and J, (t) over an infinite 

period of time are arbitrarily small, if e is sufficiently small. Recalling that oQ == 
= J, / 2;r, we obtain the proof of Theorem 2.1. 

To prove Theorem 2.2. we shall utilize the geometrical interpretation of the motion 
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of 8 body when f =,,o. due to Zhukovskii. This interpretation represents a gcneraliza- 
don of the se-d Poinsot interpretation of the Euler solution for the case of gyrostat, 
i.e. the motion of a body is represented by rolling with slipping of a cone dgidly conn- 
ected to the body, along a fixed surface. Just as in @] we can introduce the frequencies 
of motion wI, CO?, pass from the canonical variables 0, cp, peand pcpto the action-angle 
variables and reduce the problem to the proof of the ‘condition of ~~ege~ra~ (3_ 3). 
This condition is fulfilled in the present case, as it was shown in [3] for the case J., = 
= J.s=113=o, 

4, Theorems 2.1 and 2.2 make it possible to judge the behavior of the integrals 
during the motion of the body, fort E ( - CQ, oo)when the parameters entering the Ham- 
ilton function undergo specific perturbations. The following theorems are valid. 

Theorem 4.1. If the gyrostatic moment i is spa& then the Lagrange gyrostat 
moves in such a manner that the projection of its angular velocity on the third axis di- 

ffen little from its initial value during the whol,e motion. 
iheorem 4.2. If the distance between the center of gravity of the gyrostat and 

the fixed point is small, the magnitude of the angular momentum vector changes little 
th~ughout the whole motion. 

T h e or e m 4.3. If the gyrostat is made to rotate rapidly, the magnitude of the angu- 
kr momentum vector differs little from its initial value throughout the whole motion, 

To prove Theorem 4.1 it is sufficient to set in (1.8) A, = As, cl = a, = 0, 1, = %*, 
a * = r&*, A, = &s” and apply Theorem 2.1. The function &is the Hamilton functa 
ion in the Lagrange case and ZX has the form 

lil = 
1 

2~11 sin 6 [E sin S(k~ + h?) -2 (AI* + k*) (pe co9 g, sin 6 4 (p+ - Prp cos 61 sW1 + 

+ 
&.;s - 2p&* 

2tls + SA.” 

Setting fn (1.8)I’ = @we find that the function Hcan be written in the form (2.Q 
&is the Hamilton fiJnction in the Zh~o~ii case and 

II,==1 r* [(el sin rp + es co9 rp) sin 6 + e3 co9 41 

Applying now Theorem 2.2 we obtain the proof of Theorem 4.2. Theorem 4.3 follo- 
ws from Theorem 4.2 as the problem of rapid rotation of a gyrostat is ma~ematically 
equivalent to the problem of motion of a gyrostat in a weak attraction field. 
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